如图,我国甲、乙两艘海监执法船某天在某岛附近海域巡航,某一时刻这两艘船分别位于该岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向,位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,且平均速度分别是20海里/时,18海里/时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,cos44°≈0.72)
如图,直线经过点B(,2),且与x轴交于点A.将抛物线沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.(1)求∠BAO的度数;(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;(3)在抛物线平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.
阅读理解:对于任意正实数a、b,∵≥0, ∴≥0,∴≥,只有当a=b时,等号成立.结论:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值.根据上述内容,回答下列问题:若m>0,只有当m= 时, .思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证≥,并指出等号成立时的条件. 探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为 ;方案二中,当0≤x≤100时,y与x的函数关系式为 ,当x>100时,y与x的函数关系式为 ;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.
一只不透明的袋子中装有4个小球,分别标有数字2、3、4、x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近.试估计出现“和为7”的概率;(2)根据(1),若x是不等于2、3、4的自然数,试求x的值.
某工厂接受一批支援四川省汶川灾区抗震救灾帐蓬的生产任务.根据要求,帐篷的一个横截面框架由等腰三角形和矩形组成(如图所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=,矩形BCDE的边CD=2BC,这个横截面框架(包括BE)所用的钢管总长为15m.求帐篷的篷顶A到底部CD的距离.(结果精确到0.1m)