如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、D两点,与反比例函数y=的图象在第四象限相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0, -6)且S△DBP=27.(1)求上述一次函数与反比例函数的表达式;(2)设点Q是一次函数y=kx+3图象上的一点,且满足S△DOQ="2" S△COD,求点Q的坐标.
若方程的解是正数,求a的取值范围.关于这道题,有位同学做出如下解答: 解:去分母得:2x+a=﹣x+2.化简,得3x=2﹣a.故. 欲使方程的根为正数,必须>0,得a<2. 所以,当a<2时,方程的解是正数. 上述解法是否有误?若有错误请说明错误的原因,并写出正确解答;若没有错误,请说出每一步解法的依据.
先化简,再求值:,其中a的值在0,1,﹣1,2,5中选出一个合适的值.
设,求证
已知(a≠b),求的值.
某港受潮汐的影响,近日每天24小时港内的水深变化大体如下图: 一般货轮于上午7时在该港码头开始卸货,计划当天卸完货后离港.已知这艘货轮卸完货后吃水深度为2.5m(吃水深度即船底离开水面的距离).该港口规定:为保证航行安全,只有当船底与港内水底间的距离不少于3.5m时,才能进出该港. 根据题目中所给的条件,回答下列问题: (1)要使该船能在当天卸完货并安全出港,则出港时水深不能少于 m,卸货最多只能用 小时; (2)已知该船装有1200吨货,先由甲装卸队单独卸,每小时卸180吨,工作了一段时间后,交由乙队接着单独卸,每小时卸120吨.如果要保证该船能在当天卸完货并安全出港,则甲队至少应工作几小时,才能交给乙队接着卸?