(本小题满分16分)如图,在平面直角坐标系中,轴在地平面上,轴垂直于地面,轴、轴上的单位长度都为,某炮位于坐标原点处,炮弹发射后,其路径为抛物线的一部分,其中与炮弹的发射角有关且.(1)当时,求炮弹的射程;(2)对任意正数,求炮弹能击中的飞行物的高度的取值范围;(3)设一飞行物(忽略大小)的高度为,试求它的横坐标不超过多少时,炮弹可以击中它.(答案精确到,取)
已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为. (1)将曲线C的极坐标方程化为直坐标方程; (2)设点M的直角坐标为,直线与曲线C的交点为A、B,求的值.
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且. (1)证明:; (2)延长CD到F,延长DC到G,使得,证明:A,B,G,F四点共圆.
已知. (1)求曲线在和处的切线互相平行,求a的值; (2)求单调区间. (3)设,若对任意的,存在使,求a的范围.
如图,椭圆和圆,已知圆将椭圆的长轴三等分,且圆的面积为,椭圆的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线与圆相交于点A、B,直线EA、EB与椭圆的另一个交点分别是点P、M. (1)求椭圆的方程; (2)求面积最大值.
吉安市教育局组织中学生篮球比赛,共有实力相当的A,B,C,D四支代表队参加比赛,比赛规则如下:第一轮:抽签分成两组,每组两队进行一场比赛,胜者进入第二轮;第二轮:两队进行决赛,胜者得冠军. (1)求比赛中A、B两队在第一轮相遇的概率; (2)求整个比赛中A、B两队没有相遇的概率.