为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案,把镜子放在离树(AB)8.7m的点E处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7m,观测者目高CD=1.6m,则树高AB约是________.(精确到0.1m)
矩形纸片ABCD中,AB=3,AD=4,将纸片折叠,使点B落在边CD上的B’处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为__◆.
如图点P为弦AB上一点,连结OP,过P作,PC交⊙O于点C,若AP=4,PB=2,则PC的长为__◆.
如图,如果从半径为的圆形纸片剪去圆周的一个扇形,将留下在扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的体积是__◆.
如图,在△ABC中,D、E分别AB、AC边上的点,DE∥BC.若AD=3,DB=6,DE=1.2,则BC=◆.
反比例函数的图象经过点(2,5),若点(1,n)在反比例函数的图象上,则n的值是◆.