(本题7分)化简求值.已知:,求式子的值.
如图,二次函数的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3). (1)求该二次函数的表达式; (2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式; (3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由; ②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.
如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF. 求证:(1)△AEH≌△CGF; (2)四边形EFGH是菱形.
阅读下列材料,并解决相关的问题. 按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为,依次类推,排在第位的数称为第项,记为. 一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母表示().如:数列1,3,9,27,…为等比数列,其中,公比为. 则:(1)等比数列3,6,12,…的公比为,第4项是. (2)如果一个数列,,,,…是等比数列,且公比为,那么根据定义可得到:,,,…… . 所以:,,, 由此可得:(用和的代数式表示) (3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.
如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A.B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m. (1)求点B到AC的距离; (2)求线段CD的长度.
小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?