(本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有 名学生;(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ;(3)将图2补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.
如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.
解方程:.
我们知道,经过原点的抛物线解析式可以是。 (1)对于这样的抛物线: 当顶点坐标为(1,1)时,a=; 当顶点坐标为(m,m),m≠0时,a 与m之间的关系式是; (2)继续探究,如果b≠0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b; (3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,B3,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长。
如图,等腰梯形ABCD中,AD∥BC,∠B=450,P是BC边上一点,△PAD的面积为,设AB=x,AD=y。 (1)求y与x的函数关系式; (2)若∠APD=450,当y=1时,求PB·PC的值; (3)若∠APD=900,求y的最小值。
如图,△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=。 (1)求证:BC是⊙O的切线; (2)求的长。