某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元.(1)设产量为件时,总利润为(万元),求的解析式;(2)产量定为多少件时总利润(万元)最大?并求最大值(精确到1万元).
在△ABC中,角所对的边分别为a,b,c,(1)求角A;(2)若2sinC="3sinB," △ABC的面积,求a.
各项为正的数列满足,,(1)取,求证:数列是等比数列,并求其公比;(2)取时令,记数列的前项和为,数列的前项之积为,求证:对任意正整数,为定值.
函数,(1)若时,求的最大值;(2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
已知椭圆,离心率,且过点,(1)求椭圆方程;(2)以为直角顶点,边与椭圆交于两点,求 面积的最大值.
如图,已知平面,为等边三角形,(1)若平面平面,求CD长度;(2)求直线AB与平面ADE所成角的取值范围.