袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量ξ的概率分布;(3)求甲取到白球的概率.
(本小题满分12分)甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为、、,乙袋中红色、黑色、白色小球的个数均为,某人用左右手分别从甲、乙两袋中取球. (1)若左右手各取一球,求两只手中所取的球颜色不同的概率; (2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求的分布列和数学期望.
(本小题满分12分)在锐角三角形中,、、分别是角、、的对边,且. (1)求角的大小; (2)若,求的最大值.
(本小题满分12分,(Ⅰ)小问2分,(Ⅱ)小问3分,(Ⅲ)小问5分) 已知a,b,c,d是不全为零的实数,函数,,方程的实根都是的实根;反之,方程的实根都是的实根. (Ⅰ)求d的值; (Ⅱ)若,求c的取值范围; (Ⅲ)若,,求c的取值范围.
(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问4分,(Ⅲ)小问4分) 定义在上的函数满足条件:对所有正实数x,y成立,且,当时,有成立. (Ⅰ)求和的值; (Ⅱ)证明:函数在上为单调递增函数; (Ⅲ)解关于x的不等式:.
(本小题满分12分)解关于x的不等式.