袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量ξ的概率分布;(3)求甲取到白球的概率.
已知函数. (Ⅰ)讨论函数的单调区间; (Ⅱ)已知,对于函数图象上任意不同的两点,其中,直线的斜率为,记,若求证
已知曲线:,曲线:.曲线的左顶点恰为曲线的左焦点. (Ⅰ)求的值; (Ⅱ)设为曲线上一点,过点作直线交曲线于两点. 直线交曲线于两点. 若为中点, ① 求证:直线的方程为 ; ② 求四边形的面积.
浑南“万达广场”五一期间举办“万达杯”投掷飞镖比赛.每3人组成一队,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面正方形如图所示,其中阴影区域的边界曲线近似为函数的图像).每队有3人“成功”获一等奖,2人“成功” 获二等奖,1人“成功” 获三等奖,其他情况为鼓励奖(即四等奖)(其中任何两位队员“成功”与否互不影响). (Ⅰ)求某队员投掷一次“成功”的概率; (Ⅱ)设为某队获奖等次,求随机变量的分布列及其期望.
(本小题满分12分)如图,在中,已知在上,且又平面. (Ⅰ)求证:⊥平面; (Ⅱ)求二面角的余弦值.
(本小题满分12分)在中,内角的对边分别为,已知,且成等比数列. (Ⅰ)求的值; (Ⅱ)若求的值.