(本小题满分14分)已知数列的前项和,数列的通项为,且满足:①;②对任意正整数都有成立.(1)求与;(2)设数列的前项和为,求证:();(3)数列中是否存在三项,使得这三项按原有的顺序构成等差数列,若存在,求出这三项,若不存在,说明理由.
有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法? (1)甲得4本,乙得3本,丙得2本; (2)一人得4本,一人得3本,一人得2本; (3)甲、乙、丙各得3本.
已知复数z=(2+i)m2--2(1-i).当实数m取什么值时,复数z是: (1)虚数;(2)纯虚数;(3)复平面内第二、四象限角平分线上的点对应的复数?
已知函数. (1)试判断函数的单调性; (2)设,求在上的最大值; (3)试证明:对,不等式.
某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如下图所示.该同学为这个开学季购进了160盒该产品,以X(单位:盒,100≤X≤200)表示这个开学季内的市场需求量,Y(单位:元)表示这个开学季内经销该产品的利润. (1)根据直方图估计这个开学季内市场需求量X的平均数和众数; (2)将Y表示为X的函数; (3)根据直方图估计利润不少于4800元的概率.
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M. (1)求证:平面ABM平面PCD; (2)求三棱锥M-ABD的体积.