(满分12分)已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (t为参数)。(Ⅰ)写出直线的直角坐标方程与曲线C的普通方程;(Ⅱ)曲线经过伸缩变换得到曲线,设曲线上任一点为,求的的最小值;
已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)设函数,求的值域.
已知为等差数列的前项和,且.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.
已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得<,求的取值范围.
设椭圆:的左、右焦点分别是、,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过、两点.(Ⅰ)求椭圆的方程;(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.
平行四边形中,,,,以为折线,把折起,使平面平面,连结.(Ⅰ)求证:; (Ⅱ)求二面角的大小.