(本小题满分6分)某小学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线与BC边相交于D点. (1)求点D的坐标; (2)若抛物线经过点A,求此抛物线的表达式及对称轴; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为坐标轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出点M的坐标和符合条件的点P的坐标. (4)当(3)中符合条件的△POM面积最大时,过点O的直线将其面积分为∶两部分,请直接写出直线的解析式
为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,湖州市决定从2010年12月1日起,在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:
已知可供建造垃圾初级处理点占地面积不超过370m2,该街道共有490幢居民楼. (1)满足条件的建造方案共有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.
如图,以线段为直径的⊙交线段于点,点是弧AE的中点,交于点,°,,. (1)求的度数; (2)求证:BC是⊙的切线; (3)求MD的长度.
如图,是四边形的对角线上两点,. 求证:(1); (2)四边形是平行四边形.
如图,已知线段及∠O. (1)只用直尺和圆规,求作△ABC,使BC,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法); (2)在△ABC中作BC的中垂线分别交AB、BC于点E、F,如果∠B=30°,求△BEF与△ABC的面积之比.