当a取某一范围内的实数时,代数式的值是一个常数(确定的值),请找出这个范围.
某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;
维修次数
8
9
10
11
12
频数(台数)
20
30
(1)以这100台机器为样本,估计"1台机器在三年使用期内维修次数不大于10"的概率;
(2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?
某工厂为贯彻落实"绿水青山就是金山银山"的发展理念,投资组建了日废水处理量为 m 吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.
(1)求该车间的日废水处理量 m ;
(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元 / 吨,试计算该厂一天产生的工业废水量的范围.
先化简,再求值: ( x - 1 ) ÷ ( x - 2 x - 1 x ) ,其中 x = 2 + 1 .
解方程组 x - y = 5 2 x + y = 4 .
已知抛物线 y = a x 2 + bx + c ( b < 0 ) 与 x 轴只有一个公共点.
(1)若抛物线与 x 轴的公共点坐标为 ( 2 , 0 ) ,求 a 、 c 满足的关系式;
(2)设 A 为抛物线上的一定点,直线 l : y = kx + 1 - k 与抛物线交于点 B 、 C ,直线 BD 垂直于直线 y = - 1 ,垂足为点 D .当 k = 0 时,直线 l 与抛物线的一个交点在 y 轴上,且 ΔABC 为等腰直角三角形.
①求点 A 的坐标和抛物线的解析式;
②证明:对于每个给定的实数 k ,都有 A 、 D 、 C 三点共线.