如图,若观测点的高度为h,观测者视线能达到的最远距离为d,则,其中R是地球半径(通常取6400km).(1)小丽站在海边一块岩石上,眼睛离地面的高度为20m,此时小丽视线能达到的最远距离为多少千米?(2)已知泰山到海边的最近距离是216000m,泰山的海拔高度为1545m,利用计算,判断站在泰山之巅能否看到大海.
如图,抛物线与x轴交于C.A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点. (1)分别求出点A.点B的坐标; (2)求直线AB的解析式; (3)若反比例函数的图象过点D,求k值; (4)两动点P、Q同时从点A出发,分别沿AB.AO方向向B.O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧上一动点(不与A.C重合). (1)求∠APC与∠ACD的度数; (2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形. (3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.
阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22. (1)按照这个规定,请你计算的值; (2)按照这个规定,请你计算:当x2﹣4x+4=0时,的值.
某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A.B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?
黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题: (1)求该岛的周长和面积;(结果保留整数,参考数据) (2)求∠ACD的余弦值.