个体经营户小李在蔬菜批发市场上了解到如下信息:
他从批发市场上批发了44千克的西红柿和红辣椒,共用了116元,到小菜市场当天就卖完了.问:小李当天能赚多少钱?
已知AB∥CD,AD、BC交于点O。 (1)试说明△AOB∽△DOC; (2)若AO=2,DO=3,CD=5,求AB的长。
计算:6tan230°-sin60°-2sin45°
如图,直线与轴、轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从轴开始以每秒1个长度单位的速度向上平行移动(即EF∥轴),并且分别与轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)当t=1秒时,求梯形OPFE的面积; (2)t为何值时,梯形OPFE的面积最大,最大面积是多少? (3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.
某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
该商品以每千克50元为售价,在此基础上设每千克的售价上涨元(为正整数),每个月的销售利润为元. (1)求与的函数关系式,并直接写出自变量的取值范围; (2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
如图,在正△ABC中,点D是AC的中点,点E在BC上,且=. 求证:(1)△ABE∽△DCE; (2),求