今年我市的蔬菜市场从5月份开始,由于本地蔬菜的上市,某种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数:.(1)求出5月份y与x所满足的二次函数关系式;(2)若5月份的进价m(元/千克)与周数x所满足的函数关系为.求出5月份销售此种蔬菜一千克的利润W(元)与周数x的函数关系式,并求出在哪一周销售此种蔬菜一千克的利润最大?且最大利润是多少?
已知关于x的方程x2+2(k﹣3)x+k2=0有两个实数根x1、x2. (1)求k的取值范围; (2)若|x1+x2﹣9|=x1x2,求k的值.
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度). (1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ; (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ; (3)△A2B2C2的面积是 平方单位.
如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2). (1)求反比例函数和一次函数的解析式; (2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
(1)计算:2cos45°﹣(π+1)0 (2)解方程:x(2x﹣5)=4x﹣10.
如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D. (1)直接写出A、B、C三点的坐标和抛物线的对称轴; (2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m; ①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形? ②设△BCF的面积为S,求S与m的函数关系式.