如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N. (1)当AD=CD时,求证DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?
如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若已知BC=15cm,AC=20cm.求AB和CD的长.
某消防队员进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现最多只能靠近建筑物12米,即AD=BC=12米,此时建筑物中距离地面11.8米高的P处有一被困人员需要救援,已知消防云梯底部A距离地面2.8米,即AB=2.8米,则消防车的云梯至少要伸长 米.
已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.求证:△ABE≌△CAD.
先化简,再求值:¸,其中
解方程:.