(本题满分13分)已知函数.(I)若函数在处的切线与轴平行,求值;(II)讨论函数在其定义域内的单调性;(III)定义:若函数在区间D上任意都有,则称函数是区间D上的凹函数.设函数,其中是的导函数.根据上述定义,判断函数是否为其定义域内的凹函数,并说明理由.
已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.(1)求数列{an}的通项公式;(2)是否存在正整数m,使得≥1?若存在,求m的最小值;若不存在,说明理由.
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.(1)求数列{an}的通项公式;(2)令bn=ln a3n+1,n=1,2,…,求数列{bn}的前n项和Tn.
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.(1)求数列{an}的公比;(2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cos B-sin(A-B)sin B+cos(A+C)=-.(1)求cos A的值;(2)若a=4,b=5,求向量在方向上的投影.
在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsin A=3csin B,a=3,cos B=(1)求b的值;(2)求sin 的值.