设 a > 1 ,函数 f ( x ) = ( 1 + x 2 ) e x - a . (1)求 f ( x ) 的单调区间; (2)证明 f ( x ) 在 ( - ∞ , + ∞ ) 上仅有一个零点; (3)若曲线 y = f ( x ) 在点 P 处的切线与 x 轴平行,且在点 M ( m , n ) 处的切线与直线 O P 平行,( O 是坐标原点),证明: m ≤ a - 2 e 3 ﹣ 1 .
在中,角的对边分别为.已知,且.(1)当时,求的值;(2)若角为锐角,求的取值范围.
已知数列中,(1)求数列的通项;(2)令求数列的前n项和Tn.
已知α为锐角且,(1)求tanα的值;(2)求的值.
已知(1)证明:⊥;(2)若存在实数k和t,满足且⊥,试求出k关于t的关系式k=f(t).(3)根据(2)的结论,试求出k=f(t)在(-2,2)上的最小值.
二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围