已知椭圆 x 2 2 + y 2 = 1 上两个不同的点 A , B 关于直线 y = m x + 1 2 对称.
(1)求实数 m 的取值范围; (2)求 △ A O B 面积的最大值( O 为坐标原点).
(本小题满分14分)如图ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.求证:(1)PA//平面BDE;(2)平面PAC平面BDE.
已知,于,求证:.
已知椭圆,试确定的值,使得在此椭圆上存在不同两点关于直线对称.
设函数,若,求使成立的的取值范围.
(1)推导关于的表达式;(2)利用(1)的结论求的值.