如图四边形 A B C D 为菱形, G 为 A C 与 B D 交点, B E ⊥ 平面 A B C D ,
(Ⅰ)证明:平面 A E C ⊥ 平面 B E D ; (Ⅱ)若 ∠ A B C = 120 ° , A E ⊥ E C ,三棱锥 E - A C D 的体积为 6 3 ,求该三棱锥的侧面积.
(本小题满分12分)已知函数的一系列对应值如下表: (Ⅰ)求的解析式; (Ⅱ)在中,若,求的面积.
(本小题满分14分)已知函数,,设曲线在点处的切线方程为.如果对任意的,均有: ①当时,; ②当时,; ③当时,, 则称为函数的一个“ʃ-点”. (Ⅰ)判断是否是下列函数的“ʃ-点”: ①; ②.(只需写出结论) (Ⅱ)设函数. (ⅰ)若,证明:是函数的一个“ʃ-点”; (ⅱ)若函数存在“ʃ-点”,直接写出的取值范围.
(本小题满分13分)已知数列满足,为其前项和,且. (Ⅰ)求的值; (Ⅱ)求证:; (Ⅲ)判断数列是否为等差数列,并说明理由.
(本小题满分14分)已知函数. (Ⅰ)若函数的图象关于点对称,直接写出的值; (Ⅱ)求函数的单调递减区间; (Ⅲ)若在区间上恒成立,求的最大值.
(本小题满分13分)如图所示,在四边形中,,且. (Ⅰ)求△的面积; (Ⅱ)若,求的长.