已知函数 f x = 2 x , g x = x 2 + a x (其中 a ∈ R ).对于不相等的实数 x 1 , x 2 ,设 m = f x 1 - f x 2 x 1 - x 2 , n = g x 1 - g x 2 x 1 - x 2 . 现有如下命题: (1)对于任意不相等的实数 x 1 , x 2 ,都有 m > 0 ; (2)对于任意的a及任意不相等的实数 x 1 , x 2 ,都有 n > 0 ; (3)对于任意的a,存在不相等的实数 x 1 , x 2 ,使得 m = n ; (4)对于任意的a,存在不相等的实数 x 1 , x 2 ,使得 m = - n . 其中的真命题有(写出所有真命题的序号).
圆锥曲线中不同曲线的性质都是有一定联系的,比如圆可以看成特殊的椭圆,所以很多圆的性质结论可以类比到椭圆,例如;如图所示,椭圆C:可以被认为由圆作纵向压缩变换或由圆作横向拉伸变换得到的。依据上述论述我们可以推出椭圆C的面积公式为 .
不等式对一切恒成立,则实数的取值范围是___
已知函数,数列的通项公式为,那么“函数在单调递增”,是“数列为单调递增数列”的 条件
已知等差数列中,,,则__________
一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为,则该三角形的斜边长为 .