设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=23,cosA=32,且b<c,则b=
已知,其中是实数,是虚数单位,则( )
设集合,则满足的集合B的个数为( )
若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,为自然对数的底数),,.有下列命题:①在递减;②和存在唯一的“隔离直线”;③和存在“隔离直线”,且的最大值为;④函数和存在唯一的隔离直线.其中真命题的个数
假设编拟某种信号程序时准备使用(大小写有区别),把这六个字母全部排到如图所示的表格中,每个字母必须使用且只使用一次,不同的排列方式表示不同的信号,如果恰有一对字母(同一个字母的大小写)排到同一列的上下格位置,那么称此信号为“微错号”,则不同的“微错号”总个数为
在中,若,则的最小值等于( )