首页 / 初中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 填空题
  • 难度 中等
  • 浏览 432

在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:
S=1+6+62+63+64+65+66+67+68+69
然后在①式的两边都乘以6,得:
6S=6+62+63+64+65+66+67+68+69+610
②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是______________________.

登录免费查看答案和解析
相关知识点

在求166263646566676869的值时,小林发现:从