某商场计划购进冰箱、彩电进行销售,相关信息如下表:(1)若商场用80 000元购进冰箱的数量与用64 000元购进彩电的数量相等,求表中a的值.(2)在(1)的条件下,为了满足市场需求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的.①该商场有哪几种进货方式?②若该商场将购进的冰箱、彩电全部售出,获得的最大利润为w元,请用所学的函数知识求出w的值.
如图所示,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙Oˊ与y轴正半轴交于点C,连接BC,AC。CD是半⊙Oˊ的切线,AD⊥CD于点D。 (1)求证:∠CAD =∠CAB; (2)已知抛物线y=ax2+bx+c过A、B、C三点,AB=10,AC=2BC。 ①求抛物线的解析式; ②判断抛物线的顶点E是否在直线CD上,并说明理由。
已知关于x的一元二次方程kx2+(3k+1)x+3=0(k≠)。 (1)求证:无论k取何值,方程总有两个实数根; (2)若二次函数y= kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为整数,求k的值。
如图所示,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E。 (1)求证:ON是⊙A的切线; (2)若∠MON=60°,求图中阴影部分的面积(结果保留π)。
如图,已知直线分别交轴、轴于A、B两点,抛物线经过A、B两点,点C是抛物线与轴的另一个交点(与A点不重合) (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标。
某商场要经营一种新上市的文具,进价为20元/件。试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售数量就减少10件。 (1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价(元)之间的函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大.