如图,在几何体 A B C D E 中,四边形 A B C D 是矩形, A B ⊥ 平面 B E C , B E ⊥ E C , A B = B E = E C = 2 , G , F 分别是线段 B E , D C 的中点. (Ⅰ)求证: G F / / 平面 A D E ; (Ⅱ)求平面 A E F 与平面 B E C 所成锐二面角的余弦值.
设函数表示f(x)导函数。 (I)求函数一份(x))的单调递增区间; (Ⅱ)当k为偶数时,数列{}满足.证明:数列{}中 不存在成等差数列的三项; (Ⅲ)当后为奇数时,证明:对任意正整数,n都有成立.
已知双曲线的左、右两个焦点为, ,动点P满 足|P|+| P|=4. (I)求动点P的轨迹E的方程; (1I)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:终段O 上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?作出判断并证明.
某中学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须参加,且只能参加一个社团.假定某班级的甲、乙、丙三名学生对这五个社团的选择是等可能的. (I)求甲、乙、丙三名学生参加五个社团的所有选法种数; (Ⅱ)求甲、乙、丙三人中至少有两人参加同一社团的概率; (Ⅲ)设随机变量为甲、乙、丙这三个学生参加A社团的人数,求的分布列与 数学期望.
正方体.ABCD- 的棱长为l,点F为的中点. (I)(I)证明:∥平面AFC;. (Ⅱ)求二面角B-AF-一-C的大小.
△ABC中,a,b,c分别是角A,B,C的对边,向量m=(2sinB,2-cos2B),,m⊥n, (I)求角B的大小; (Ⅱ)若,b=1,求c的值.