阅读下面材料:小军遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.(1)小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:AD的取值范围是 .(2)参考小军思考问题的方法,解决问题:如图3,△ABC中,E为AB中点,P是CA延长线上一点,连接PE并延长交BC于点D.求证:PA•CD=PC•BD.
(本题10分)若,且,求证:
某地粮食需求量逐年上升,下表是部分统计数据:
(1)利用所给数据求年需求量与年份之间的回归直线方程=x+. (2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.
为了解高二某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为. (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; 下面的临界值表供参考: (参考公式K2=,其中n=a+b+c+d)
已知关于x的方程:x2﹣(6+i)x+9+ai=0(a∈R)有实数根b. (1)求实数a,b的值. (2)若复数z满足|﹣a﹣bi|﹣2|z|=0,求z为何值时,|z|有最小值,并求出|z|的值.
已知a>0,b>0,m>0,n>0,求证:am+n+bm+n ≥ ambn+anbm.