我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为: …… ① (其中、、为三角形的三边长,为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式: …… ②(其中).(1)若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积(结果保留根号);(2)你能否由公式①推导出公式②?请试试.
如图,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外侧作Rt△ABE和Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q,(1)若Rt△ABE和Rt△ACF都是等腰三角形,直接写出EP与FQ有怎样的数量关系;(2)若Rt△ABE和Rt△ACF中满足AB=" k" AE,AC=" k" AF时,(1)中的结论还成立吗?若成立,请证明;若不成立,请探究EP与FQ有怎样的数量关系?(3)若Rt△ABE和Rt△ACF中满足AB=" k" AE,AC= mAF时,联结EF交射线GA于点D,试探究ED与FD有怎样的数量关系?
如图,已知直线l经过点A(1,0),与双曲线y=(x>0)交于点B(2,1).过点P(a,a-1) (a>1)作x轴的平行线分别交双曲线y=(x>0)和y=-(x<0)于点M、N. (1)求m的值和直线l的解析式; (2)若点P在直线y=2上,求证:△PMB∽△PNA.
伦敦奥运会将于2012年7月27日开幕,组委会备选的开幕式甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:
(2)甲队队员身高的平均数为 厘米,乙队队员身高的平均数为 厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.
平行四边形ABCD中,AB=5,AD=8,∠C、∠D的平分线分别交 AD、BC与点E、F,且AF⊥BC.(1)求tan∠ADF;(2)求CE的长.
解方程: