我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为: …… ① (其中、、为三角形的三边长,为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式: …… ②(其中).(1)若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积(结果保留根号);(2)你能否由公式①推导出公式②?请试试.
先化简,然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a的值代入求值.
已知抛物线C1:()经过点A(﹣1,0)和B(3,0). (1)求抛物线C1的解析式,并写出其顶点C的坐标; (2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标; (3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时: ①tan∠ENM的值如何变化?请说明理由; ②点M到达点C时,直接写出点P经过的路线长.
如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=.过点D作DF∥BC,交AB的延长线于点F. (1)求证:DF为⊙O的切线; (2)若∠BAC=60°,DE=,求图中阴影部分的面积; (3)若,DF+BF=8,如图2,求BF的长.
为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种). (1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围; (2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.
如图,点A(,)在双曲线()上. (1)求k的值; (2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.