(年广东广州14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.
如图,已知:在等边三角形ABC中,D、E分别在AB和AC上,且AD="CE" ,BE和CD相交于点P。(1)说明△ACD≌△CEB(2)求:∠BPD 的度数.
如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB 长2.5米,顶端A在AC 上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?
如图,在△ABC中,∠B=∠C, AD是△ABC的BC边上的高,DE∥AB,交AC于点E,判断△ADE是不是等腰三角形,并说明理由。
我们在七年级(下)中学习了三角形的内角和等于180°,当时,我们是通过拼图的方法得到的。现在你能否利用平行线的性质来得出“三角形的内角和等于180°”?请你添上辅助线并把过程写下来。
如图,已知∠BDE=∠DEF,∠DFE=∠B,试说明:∠CFD+∠C=180° 解:∵∠BDE=∠DEF(已知), ∴∥( ) ∴∠DFE=∠ADF ( ) ∵∠DFE=∠B(已知) ∴∠ADF=∠B ∴∥( ) ∴∠CFD+∠C=180°()