(2014年四川内江6分)通过对课本中《硬币滚动中的数学》的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图①).在图②中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为 .
射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值_________。(单位:秒)
如图,在矩形ABCD中,已知AB=3cm,BC=4cm.将矩形ABCD绕着点D在桌面上顺时针旋转至A1B1C1D,使其停靠在矩形EFGH的点E处,若∠EDF=30°,则点B的运动路径长为 cm.(结果保留π)
如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上运动(与A、B两点不重合),如果∠P=46°,那么∠ACB的度数是 .
如图,AB是⊙O的直径,弦DC⊥AB,垂足为E,如果AB=20cm,CD=16cm,那么线段AE的长为 cm.
选择一组你喜欢的a,b,c的值,使二次函数y=ax2+bx+c(a≠0)的图像同时 满 足下列条件:①开口向下;②当x﹤2时,y随x的增大而增大;③当x﹥2时,y随x的增大而减小。这样的二次函数可以是_________。