(2014年广西河池12分)如图(1),在平面直角坐标系xOy中,抛物线与x轴交于,与y轴交于C(0,3),顶点为D(1,4),对称轴为DE. (1)抛物线的解析式是 ; (2)如图(2),点P是AD上的一个动点,是P关于DE的对称点,连结PE,过作F∥PE交x轴于F. 设,求y关于x的函数关系式,并求y的最大值; (3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在,请说明理由.
如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C. (1)写出反比例函数解析式; (2)求证:△ACB∽△NOM; (3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.
如图,已知反比例函数y=的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON的面积; (3)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.
已知反比例函数的图象与一次函数的图象交点为(2,2). (1)求这两个函数的解析式; (2)在下面的坐标纸中大致画出两个函数的图象,根据图象写出不等式的解集.
已知:如图1,一次函数的图像与x轴、y轴分别交于点A、B,与函数的图像交于点C,点C的横坐标为-3. (1)求点B的坐标; (2)若点Q为直线OC上一点,且,求点Q的坐标; (3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等. ① 在图2中,只利用圆规作图找到点P的位置; (保留作图痕迹,不得在图2中作无关元素.) ② 求点P的坐标.
如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴相交于点A(-3,0),与y轴交于点B,且与正比例函数y=的图象交点为C(m,4)求: (1)一次函数y=kx+b的解析式; (2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标。 (3)在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.