(年江苏常州9分)在平面直角坐标系中,二次函数的图像与轴交于点A,B(点B在点A的左侧),与轴交于点C,过动点H(0, )作平行于轴的直线,直线与二次函数的图像相交于点D,E.(1)写出点A,点B的坐标;(2)若,以DE为直径作⊙Q,当⊙Q与轴相切时,求的值;(3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,请说明理由.
如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,-2). (1)求正比例函数的解析式及两函数图象另一个交点B的坐标; (2)试根据图象写出不等式≥kx的解集; (3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.
父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同. (1)求爸爸吃前两个汤圆刚好都是花生馅的概率; (2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.
在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F. (1)求证:△AEF≌△DEB; (2)证明四边形ADCF是菱形; (3)若AC=4,AB=5,求菱形ADCF的面积.
解方程:3x2+8x-3=0
在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.