(年湖南娄底10分)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?
如图,求作一点P,使PC=PD,并且使点P到∠AOB的两边的距离相等,并说明你的理由.
如图,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.
已知:如图,CF⊥AB于E,且AE=EB,已知∠B=40°,求∠ACD、∠DCF的度数.
指出下列图形的所有对称轴数,并画出其中一条对称轴.
(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数n有什么关系?根据你的分析结果回答,正十边形,正十六边形,正二十九边形分别有几条对称轴?正五十边形呢?正一百边形呢?