某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=600,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米。已知需加固的大坝长为150米,求需要填土石方多少立方米?求加固后的大坝背水坡面DE的坡度。
已知二次函数图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x1﹤0﹤x2,与y轴交于点C,O为坐标原点,.(1)求证: ;(2)求m、n的值;(3)当p﹥0且二次函数图象与直线仅有一个交点时,求二次函数的最大值.
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:(1)D是BC的中点;(2)△BEC ∽△ADC;(3)AB× CE=2DP×AD.
已知反比例函数图象的两个分支分别位于第一、第三象限.(1)求的取值范围;(2)若一次函数的图象与该反比例函数的图象有一个交点的纵坐标是4.①求当时反比例函数的值;②当时,求此时一次函数的取值范围.
如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E. (1)求证:BD=BE; (2)若ÐDBC=30°,BO=4,求四边形ABED的面积.