在平面直角坐标系中,点为动点,、分别为椭圆的左、右焦点.已知为等腰三角形.(1)求椭圆的离心率;(2)设直线与椭圆相交于、两点,是直线上的点,满足,求点的轨迹方程.
已知A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}. (1)若A⊆B,求a的取值范围; (2)若B⊆A,求a的取值范围.
(本小题满分12分)如图所示,在多面体,四边形,均为正方形,为的中点,过的平面交于 (1)证明:; (2)(理科做) 求二面角余弦值. (3)(文科做) 若正方形边长为2,求多面体的体积.
(本小题满分12分)如图,在正四棱台中,=1,=2,=,分别是的中点. (1)求证:平面∥平面; (2)求证:平面平面; (3)(文科不做)求直线与平面所成的角.
(本小题满分10分)如图,、是以为直径的圆上两点,,,是上一点,且,将圆沿直径折起,使点在平面的射影在上,已知. (1)求证:; (2)求三棱锥的体积.
(本小题满分10分)如图,四棱锥中,⊥平面,∥,,分别为线段的中点. (1)求证:平面; (2)求证:⊥平面.