【原创】(本小题满分12分)为调查某市高中男生百米成绩,从该市高中男生中随机抽取20名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组 第五组,如图是按上述分组方法得到的频率分布直方图.根据有关规定,成绩小于16秒为达标. (Ⅰ)求这组数据的众数、中位数及达标率(精确到0.01); (Ⅱ)从这20人中不达标的人员中任取3人,至少二人成绩在16~17之间的概率.
(本小题满分15分)如图,在三棱锥中,⊥平面,,,,,分别是,,,的中点,,与交于点,与交于点,连结. (Ⅰ)求证:; (Ⅱ)求平面与平面所成角的正弦值.
(本小题满分14分)设数列的前项和为,点在直线上. (Ⅰ)求数列的通项公式; (Ⅱ)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前项和,并求使成立的正整数的最大值.
(本题满分14分)已知中, ,, 分别为角 ,,所对的边,. (Ⅰ)求的值; (Ⅱ)若的面积为,,求 、的长.
已知函数. (Ⅰ)求函数的值域; (Ⅱ)设,证明.
已知圆锥曲线(是参数)和定点,,是圆锥曲线的左、右焦点. (Ⅰ)求经过点且垂直于直线的直线的参数方程; (Ⅱ)设为曲线上的动点,求到直线距离的取值范围.