(本小题满分12分)已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查.(Ⅰ)从四个社团中各抽取多少人?(Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.
已知P(x,y)是圆x2+y2=2y上的动点. (1)求2x+y的取值范围; (2)若x+y+c>0恒成立,求实数c的取值范围
已知直线l的极坐标方程为:ρcos=6,圆O的参数方程为:求直线l与圆O相交所得弦的弦长.
已知直线l的极坐标方程为ρsin=,求点A到直线l的距离.
(本小题满分14分)已知函数处取得极值. (1)求实数a的值,并判断上的单调性; (2)若数列满足; (3)在(2)的条件下,记 求证:
在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为.记动点C的轨迹为曲线W. (Ⅰ)求W的方程; (Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围; (Ⅲ)已知点M(),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量与共线?如果存在,求出k的值;如果不存在,请说明理由.