(本小题满分14分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(1)求的极值;(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分. (理)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数,公比为正整数的无穷等比数列的子数列问题. 为此,他任取了其中三项. (1) 若成等比数列,求之间满足的等量关系; (2) 他猜想:“在上述数列中存在一个子数列是等差数列”,为此,他研究了与的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确; (3) 他又想:在首项为正整数,公差为正整数的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分. (理)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点),过点作一直线交椭圆于、两点 . (1)求椭圆的方程; (2)求面积的最大值; (3)设点为点关于轴的对称点,判断与的位置关系,并说明理由.
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. (理)某种型号汽车四个轮胎半径相同,均为,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为(假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路(如图(1)所示,其中()),且前轮已在段上时,后轮中心在位置;若前轮中心到达处时,后轮中心在处(假定该汽车能顺利驶上该上坡路). 设前轮中心在和处时与地面的接触点分别为和,且,. (其它因素忽略不计) (1)如图(2)所示,和的延长线交于点, 求证:(cm); (2)当=时,后轮中心从处移动到处实际移动了多少厘米? (精确到1cm)
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数=. (1)判断函数的奇偶性,并证明; (2)求的反函数,并求使得函数有零点的实数的取值范围.
(本题满分12分) 已知集合,实数使得集合满足, 求的取值范围.