(本小题满分12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)设求证:.
(本小题满分14分)已知三棱锥中,平面,,为中点,为的中点,(1)求证:平面;(2)求证:平面平面.
(本小题满分14分)已知,(1)若,求的最大值及对应的x的值.(2)若, ,求tanx的值.
已知函数(其中).若为的极值点,解不等式.
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:.(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
选修4—4:极坐标与参数方程已知圆的极坐标方程为:.(1)将极坐标方程化为普通方程;(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.