如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A,O,D,E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上第二象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,O为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
如图,AD为△ABC的中线,BE为△ABD的中线. (1)∠ABE=15°,∠BAD=40°,求∠BED的度数; (2)作△BED的边BD边上的高; (3)若△ABC的面积为40,BD=5,则△BDE 中BD边上的高为多少?
如图,给出五个等量关系:①AD="BC" ②AC="BD" ③CE="DE" ④∠D=∠C ⑤.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. 已知: 求证: 证明:
①如图:A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站, 将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在 图中确定该点(保留作图痕迹) ②如图:某地有两所大学M、N和两条相交叉的公路a、b,现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;
如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.
如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A、B是数轴上的点,完成下列各题: (1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_________,A、B两点间的距离是________. (2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A、B两点间的距离是________。一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是________,A、B两点间的距离是______.