(本题6分)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点都在小方格的顶点上.现以点D,E,F,G,H中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△ABC相似且相似比为1:2.(2)在图乙中画出一个三角形与△ABC的面积比为1:4但不相似.
如图,在 ΔABC 中, AB = BC ,以 AB 为直径的 ⊙ O 交 BC 于点 D ,交 AC 于点 F ,过点 C 作 CE / / AB ,与过点 A 的切线相交于点 E ,连接 AD .
(1)求证: AD = AE ;
(2)若 AB = 6 , AC = 4 ,求 AE 的长.
在一次课外活动中,甲、乙两位同学测量公园中孔子塑像的高度,他们分别在 A , B 两处用高度为 1 . 5 m 的测角仪测得塑像顶部 C 的仰角分别为 30 ° , 45 ° ,两人间的水平距离 AB 为 10 m ,求塑像的高度 CF .(结果保留根号)
学校需要添置教师办公桌椅 A 、 B 两型共200套,已知2套 A 型桌椅和1套 B 型桌椅共需2000元,1套 A 型桌椅和3套 B 型桌椅共需3000元.
(1)求 A , B 两型桌椅的单价;
(2)若需要 A 型桌椅不少于120套, B 型桌椅不少于70套,平均每套桌椅需要运费10元.设购买 A 型桌椅 x 套时,总费用为 y 元,求 y 与 x 的函数关系式,并直接写出 x 的取值范围;
(3)求出总费用最少的购置方案.
如图所示,四边形 ABCD 是菱形,边 BC 在 x 轴上,点 A ( 0 , 4 ) ,点 B ( 3 , 0 ) ,双曲线 y = k x 与直线 BD 交于点 D 、点 E .
(1)求 k 的值;
(2)求直线 BD 的解析式;
(3)求 ΔCDE 的面积.
在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.
(1)“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;
(2)从中任意抽取1个球恰好是红球的概率是 ;
(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.