如图所示,抛物线与直线相切于点.(1)求满足的关系式,并用表示点的坐标;(2)设是抛物线的焦点,若以为直角顶角的的面积等于,求抛物线的标准方程.
(本小题满分为14分)已知函数,点分别是函数图象上的最高点和最低点.(1)求点的坐标以及的值;(2)设点分别在角的终边上,求的值.
(本小题满分为14分)已知定义域为R的函数是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
设定义域为的单调函数,对任意,都有,若是方程的一个解,且,则实数= .
(本小题满分14分)已知函数.(1)当时,求函数的单调区间;(2)若对于任意都有成立,求实数的取值范围;(3)若过点可作函数图象的三条不同切线,求实数的取值范围.
(本小题满分14分)设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点).(1)求椭圆的方程;(2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.