已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为,左右顶点分别为,.经过椭圆左焦点的直线与椭圆交于、两点.(Ⅰ)求椭圆标准方程;(Ⅱ)记与的面积分别为和,且,求直线的方程;(Ⅲ)若是椭圆上的两动点,且满足,动点满足(其中为坐标原点),求动点的轨迹方程.
设,(1)若在上无极值,求值;(2)求在上的最小值表达式;(3)若对任意的,任意的,均有成立,求的取值范围.
已知函数,(1)若,求的单调区间;(2)若函数存在两个极值点,且都小于1,求的取值范围;
已知为奇函数的极大值点,(1)求的解析式;(2)若在曲线上,过点作该曲线的切线,求切线方程.
如图,已知球的半径为,球内接圆锥的高为,体积为, (1)写出以表示的函数关系式;(2)当为何值时,有最大值,并求出该最大值.
设,(1)解方程;(2)解不等式.