把一个四位数x,先四舍五入到十位,得到的数为y,再四舍五入到百位,得到的数为z,再四舍五入到千位,恰好得到3000.(1)原四位数x的最大值为多少?最小值为多少?(2)将x的最大值与最小值的差用科学记数法表示出来(精确到千位)
(年青海省西宁市)如图,一次函数的图象与x轴交于点B,与反比例函数的图象的交点为A(﹣2,3). (1)求反比例函数的解析式; (2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.
(年贵州省贵阳市)如图,一次函数的图象与反比例函数的图象相交于A(2,1),B两点. (1)求出反比例函数与一次函数的表达式; (2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.
(年贵州省遵义市)某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本(万元/吨)与产量(吨)之间是一次函数关系,函数与自变量的部分对应值如下表:
(1)求与的函数关系式,并写出自变量的取值范围; (2)当投入生产这种产品的总成本为1200万元时,求该产品的总产量;(注:总成本=每吨成本×总产量) (3)市场调查发现,这种产品每月销售量(吨)与销售单价(万元/吨)之间满足如图所示的函数关系.该厂第一个月按同一销售单价卖出这种产品25吨,请求出该厂第一个月销售这种产品获得的利润.(注:利润=售价—成本)
(年贵州省黔东南州)如图,已知二次函数的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为. (1)求二次函数的解析式及点B的坐标; (2)由图象写出满足的自变量x的取值范围; (3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.
(年青海省中考)如图,二次函数的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M. (1)求该抛物线的解析式; (2)判断△BCM的形状,并说明理由; (3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.