(本小题8分)新华中学计划"元旦"期间组织初一学生到森林公园秋游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个空余座位,(1)新华中学参加秋游的学生有多少人?(2)如果同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)
如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C,过B点作BE⊥x轴,垂足为E.若△ADO的面积为1,D为OB的中点,(1)求四边形DCEB的面积。(2)求k的值。
(1)解方程:x2﹣2x﹣2=0 (2)解方程:.4(x+3)2=25(x﹣2)2.
如图1,直线l交x轴、y轴分别于A、B两点,A(a,0),B(0,b),且(a-b)2+|b-4|=0.(1)求A、B两点坐标;(2)如图2,C为线段AB上一点,且C点的横坐标是3.求△AOC的面积;(3)如图2,在(2)的条件下,以OC为直角边作等腰直角△POC,请求出P点坐标;(4)如图3,在(2)的条件下,过B点作BD⊥OC,交OC、OA分别于F、D两点,E为OA上一点,且∠CEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.
如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.
某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?