如图,某市有一条东西走向的公路,现欲经过公路上的处铺设一条南北走向的公路.在施工过程中发现在处的正北百米的处有一汉代古迹.为了保护古迹,该市决定以为圆心,百米为半径设立一个圆形保护区.为了连通公路、,欲再新建一条公路,点、分别在公路、上,且要求与圆相切.(1)当距处百米时,求的长;(2)当公路长最短时,求的长.
(本小题满分12分) 已知,, 若,求的值.
(本小题满分10分) 已知,,若是的必要而不充分条件,求实数的取值范围.
(本小题满分14分)已知函数,是常数. (Ⅰ) 证明曲线在点的切线经过轴上一个定点; (Ⅱ) 若对恒成立,求的取值范围; (参考公式:) (Ⅲ)讨论函数的单调区间.
(本小题满分14分) 已知函数,数列满足. (Ⅰ)求数列的通项公式; (Ⅱ)求; (Ⅲ)求证:
(本小题满分14分)已知椭圆以为焦点,且离心率. (Ⅰ)求椭圆的方程; (Ⅱ)过点斜率为的直线与椭圆有两个不同交点,求的范围。 (Ⅲ)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在直线,满足(Ⅱ)中的条件且使得向量与垂直?如果存在,写出的方程;如果不存在,请说明理由。