(本小题满分16分)设,函数.(1)若为奇函数,求的值;(2)若对任意的,恒成立,求的取值范围;(3)当时,求函数零点的个数.
设函数图象的一条对称轴是直线. (1)求;(2)求f(x)的最小正周期、单调增区间及对称中心.
(1)已知a>b>c,且a+b+c=0,用分析法求证:<a.(2)f(x)=,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.
已知函数(k为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.(1)求k的值及的单调区间;(2)设其中为的导函数,证明:对任意,.
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(1)打满3局比赛还未停止的概率;(2)比赛停止时已打局数的分别列与期望E.
已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4.(1)求函数f(x)的解析式;(2)求函数的值域.