设函数,且存在使得成立。(1)若(2)若直线的图像交与M,N两点,且M,N两点的连线被直线平分,求出的最大值。
(本小题满分14分)如图,已知矩形ABCD的边AB="2" ,BC=,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P。 (1)求证:平面PCE平面PCF; (2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦; (3)求二面角A-PE-C的大小。
(本小题满分12分)某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,(>),且不同种产品是否受欢迎相互独立。记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(1)求该公司至少有一种产品受欢迎的概率; (2)求,的值; (3)求数学期望。
(本小题满分12分)设,且满足 (1)求的值.(2)求的值.
已知函数.(为常数) (1)当时,求函数的最小值; (2)求函数在上的最值; (3)试证明对任意的都有
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2, (1)试求椭圆的方程; (2)若斜率为的直线与椭圆交于、两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论