某小区要建一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200平方米的十字形地域,计划在正方形MNPQ上建一座花坛,造价为每平方米4200元,在四旁四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元.(1)设总造价为S元,AD长为x米,试建立S关于x的函数关系式;(2)当x为何值时S最小,并求出这个最小值.
为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和. (1)求k的值及f(x)的表达式; (2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点. (Ⅰ)求函数的解析式; (Ⅱ)在中,角的对边分别为,且,求的取值范围.
设和是函数的两个极值点,其中,. (1)求的取值范围; (2)若,求的最大值.注:e是自然对数的底.
如图,在梯形中,,,,平面平面,四边形是矩形,,点在线段EF上. (1)求异面直线与所成的角; (2)求二面角的余弦值.
已知数列,,,. (1)求证:为等比数列,并求出通项公式; (2)记数列 的前项和为且,求.