如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.
已知:如图,在中,D是AC上一点,E是AB上一点,且∠AED=∠C. (1)求证:△AED∽△ACB; (2)若AB=6,AD=4,AC=5,求AE的长。
二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根。 (2)写出不等式的解集。 (3)写出y随x的增大而减小的自变量x的取值范围。 (4)若方程有两个不相等的实数根,求k的取值范围。
商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价x元。据此规律,请回答: (1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示); (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字。现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y)。记S=x+y。 (1)请用列表或画树状图的方法写出所有可能得到的点P的坐标; (2)李刚为甲、乙两人设计了一个游戏:当S<6时甲获胜,否则乙获胜。你认为这个游戏公平吗?对谁有利?
计算:(1)。 (2)解方程:。