(本小题满分10分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
(Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: ,.
已知函数(1)当时,求上的最大值、最小值:(2)求的单调区间;
如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的余弦值.
某高等学校自愿献血的50位学生的血型分布的情况如下表:
(1) 从这50位学生中随机选出2人,求这2人血型都为A型的概率;(2)现有一位血型为A型的病人需要输血,要从血型为A,O的学生中随机选出2人准备献血,记选出A型血的人数为求随机变量的分布列及数学期望.
已知sin(π-α)=,α∈(0,).(1)求sin2α-cos2的值;(2)求函数f(x)=cosαsin2x-cos2x的单调递增区间.
定义在区间(-1,1)上的函数f (x)满足:①对任意的x,y∈(-1,1),都有f (x) + f (y) =; ②当x∈(-1,0),f (x) > 0. (1)求证f (x)为奇函数;(2)试解不等式:f (x) + f (x-1) .